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Abstract Markov Chain Monte Carlo (MCMC) methods may be employed to search
for a probability distribution over a bounded space of function arguments to estimate
which argument(s) optimize(s) an objective function. Thissearch-based optimization
requires sampling the suitability, or fitness, of argumentsin the search space. When
the objective function or the fitness of arguments vary with time, significant explo-
ration of the search space is required. Search efficiency then becomes a more relevant
measure of the usefulness of an MCMC method than traditionalmeasures such as
convergence speed to the stationary distribution and asymptotic variance of station-
ary distribution estimates. Search efficiency refers to howquickly prior information
about the search space is traded-off for search effort savings. Optimal search effi-
ciency occurs when the entropy of the probability distribution over the space during
search is maximized. Whereas the Metropolis case of the Hastings MCMC algorithm
with fixed candidate generation is optimal with respect to asymptotic variance of sta-
tionary distribution estimates, this paper proves that Barker’s case is optimal with
respect to search efficiency if the fitness of the arguments inthe search space is char-
acterized by an exponential function. The latter instance of optimality is beneficial
for time-varying optimization that is also model-independent.
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1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms [6,4,3,2] are useful for simulat-
ing large random fields through sampling, and are frequentlyemployed in statistical
mechanics applications [2]. MCMC algorithms utilize an irreducible, aperiodic, time-
homogeneous Markov chain such that the stationary distribution, π, is the target dis-
tribution. Since convergence to the target distribution iseasier to check for reversible
Markov chains, these Markov chains are the most frequent case of MCMC algorithms
[2].

To optimize an objective function, MCMC algorithms can be used to convert a
prior uniform probability distribution over a bounded search space of arguments that
are candidates for function optimization to a target probability distribution that is
concentrated in a neighborhood at the location of one or morearguments that achieve
function optimization. This conversion process can be accomplished through sam-
pling the suitability, or fitness, of the candidate arguments. The extent to which the
target probability distribution is concentrated in a neighborhood may be tuned, with
a limiting case of tunability being a distribution consisting of a delta function at the
location of an argument that exactly optimizes the function. This paper proves that,
under certain conditions, a well-known MCMC algorithm utilizing a reversible, irre-
ducible, aperiodic, time-homogeneous Markov chain accomplishes optimization by
searching forπ efficiently, where this optimal search efficiency is defined as the quick-
est trade-off of prior information about the search space for search effort savings [8].
Such savings are important when significant exploration of the search space is re-
quired, for instance, in model-independent optimization with time-varying objective
function or argument fitnesses (e.g., [12]). Optimal searchefficiency is characterized
by a method that maximizes the entropy of the probability distribution over the search
space during the search [7,8]. Hence, this paper clarifies the conditions under which
the well-known MCMC algorithm, Barker’s algorithm [1], maximizes entropy.

The approach in this paper is different from the covariance matrix adaptation evo-
lution strategy [5], which employs a maximum entropy probability distribution but is
concerned with the propagation of a covariance matrix in a manner similar to gradient-
based search that is unsuited to time-varying fitness landscapes. The approach is also
not related to the cross-entropy method for optimization [15], which deploys a cross-
entropy heuristic unlike this paper’s adaptation of the theory of rational behavior [11]
for Markov chains that yields and explains cross-entropy. Instead, the approach is
a novel optimization method based on the new theory that is equivalent to Barker’s
algorithm.

Additionally, this paper’s goal of search efficiency is different from asymptotic
variance, which is the variance of estimates of the stationary distribution when an
MCMC algorithm is started close to stationarity. Optimal asymptotic variance is char-
acterized by low values that indicate a lack of volatility inthe algorithm’s converged
solution. Examining the search efficiency of an MCMC optimization algorithm is
more useful than determining its asymptotic variance when the objective function
or the fitness values of the arguments in the search space varywith time because
the target distribution correspondingly varies, despite the algorithm being close to
stationarity prior to an objective function or fitness change.
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Search efficiency is also different from convergence speed to the stationary distri-
bution, which, for a time-homogeneous, irreducible, ergodic Markov chain, is given
by the second-largest eigenvalue modulus of the matrix of transition probabilities.
Again, examining the search efficiency of an MCMC optimization algorithm is more
useful than determining its stationary distribution convergence speed when the ob-
jective function or the fitness values of the arguments in thesearch space vary with
time because it is desirable for the algorithm to utilize information previously gained
about the search space to improve its convergence speed after an objective function
or fitness change.

The remainder of this paper is as follows. Section 2 sets up the optimization
problem to be solved by an MCMC search algorithm, and briefly highlights two
well-known MCMC methods. Section 3 provides sufficient conditions for optimal
search efficiency through an extension of the theory of rational behavior to Markov
chains. Section 4 develops a technique that satisfies the sufficient conditions for op-
timal search efficiency and explains the method’s equivalence to Barker’s algorithm.
Section 5 presents conclusions.

The primary original contributions of this paper are the claims in Theorems 2 and
3 and their proofs. A preliminary version of the technique inSection 4 appears in
[13], and a few biological parallels of this technique are noted in [14].

2 Background

2.1 Problem Definition

Let X be a search space with elementsxi , 1≤ i ≤ n. The problem seeks a probability
density functionφX : X → R

+ that accomplishes the specified objective below. Let
z : X → Z be an unknown, computable, and possibly changing function that we are
interested in. The setZ is a metric space. Suppose that we are given a desired element
zdes in the image ofz, and we wish to findx ∈ X such that||z(x)− zdes|| is small
(i.e.,z(x) ≈ zdes). Formally, we want aφX that helps achieve a known expected value
Y ≥ 0, i.e.,

EφX [||z(x)−zdes||] = Y. (1)

In the above,Y is effectively a tolerance, i.e., it is the acceptable mean distance be-
tween candidates in the image ofz compared to the desired image value. Lety(x) =
||z(x)−zdes||. The scheme to findφX should be efficient in that it trades off prior infor-
mation aboutX for search effort savings as quickly as possible. Letf : Z → R

+. We
allow the method to employ a functionF : X →R

+ : x 7→ F(x) = ( f ◦z)(x) = f (z(x)),
a real-valued, positive fitness function.

2.2 MCMC Design

The design of an MCMC algorithm involves finding an ergodic matrix of transition
probabilitiesP with elementsPi j that satisfy

πiPi j = π jPji , ∀i, j. (2)
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Here,πi denotes thei-th element of the stationary distribution vectorπ overX, and
Pi j represents the probability of transitioning from elementxi to elementx j . The
distributionπ is the soughtφX in Section 2.1. A typical choice [2] ofPi j has the form

Pi j = Qi j αi j , ∀ j 6= i. (3)

Here,Q is a probability transition matrix (called thecandidate-generating matrix)
with elementsQi j representing the probability of “tentatively” choosing a transition
from xi to x j , andα is a probability transition matrix with elementsαi j representing
the probability of accepting that transition. A generic formulation for the acceptance
probabilities is specified by the Hastings algorithm, whichsets

αi j =
Si j

1+
πiQi j
π j Q ji

, (4)

whereSi j are the elements of a symmetric matrixS. Special cases of the Hastings
algorithm include the Metropolis algorithm, which is used in simulated annealing
[10], and Barker’s algorithm.

2.3 Metropolis Algorithm

The acceptance probability for the Metropolis algorithm sets Si j = 1+ min
(

πiQi j
π j Q ji

,

π j Q ji
πiQi j

)

in (4) [2], so that

αi j = min

(

1,
π jQ ji

πiQi j

)

. (5)

In the case of purely randomQ (Qi j is constant), this becomes

αi j = min

(

1,
π j

πi

)

. (6)

The Metropolis algorithm is optimal with respect to asymptotic variance in the class
of Hastings algorithms with fixedQ [2].

2.4 Barker’s Algorithm

The acceptance probability for Barker’s algorithm setsSi j = 1 in (4) [2], so that

αi j =
1

1+
(

πi
π j

)(

Qi j
Q ji

) . (7)

In the case of purely randomQ, this becomes

αi j =
1

1+
(

πi
π j

) . (8)
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3 Sufficient Conditions for Efficient Search

Extending the theory of rational behavior [11] to Markov chains yields sufficient con-
ditions for optimal search efficiency. Let(X,P) be a time-homogeneous, irreducible,
ergodic Markov chain, whereX = {x1,x2, . . . ,xn} is the set of states of a Markov pro-
cess,P∈ R

n×n is the matrix of transition probabilities for these states,andn < ∞ is
the number of states. Assume that the initial probability distribution over the states
is known, i.e., we are given ann-vectorp(0) having elementspi(0) = Pr[X (0) = xi ]
for all xi ∈ X, whereX (0) denotes the state realization at time 0, and we have
n
∑

i=1
pi(0) = 1. Since we have assumed that the states inX are ergodic and irreducible,

they admit a unique stationary probability distribution [2]. Let π =
[

π1 π2 . . . πn
]

be
the row vector of these stationary probabilities, satisfying the constraintsπi > 0 ∀i,

and
n
∑

i=1
πi = 1. LetF : X → R

+ be a positive fitness function. LetN ∈ N be a natural

number.

Definition 1 The time-homogeneous, irreducible, ergodic Markov chain(X,P) is
said tobehave rationallywith respect to fitnessF with levelN if

πi

π j
=

(

F (xi)

F (x j)

)N

, 1≤ i ≤ n, 1≤ j ≤ n. (9)

This is a definition ofglobal rationality, which refers to the ratio of the probabilities.
Each stationary probability can also be explicitly characterized to ensure Markov

chain rational behavior.

Theorem 1 The time-homogeneous, irreducible, ergodic Markov chain(X,P) be-
haves rationally with respect to fitness F with level N if and only if

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n. (10)

Proof See [12].

Here, we have a more general, probabilistic version of the optimization of an
objective function. A Markov chain that behaves rationallyselects the state of maxi-
mum fitness with the highest stationary probability, and, inthe limit asN approaches
∞, this probability is 1. That is,N tunes the concentration of the stationary probabil-
ity distribution around the state of maximum fitness, and in the limit asN approaches
∞, the problem and solution then revert to one of standard optimization. Remarkably,
rational behavior in Markov chains is the result of a subsidiary optimization.

Theorem 2 The stationary distributionπ of the time-homogeneous, irreducible, er-
godic Markov chain(X,P) that behaves rationally with respect to fitness F with level
N solves the optimization problem

min
π1,...,πn

U(π) = −
n

∑
i=1

ϕi ln(πi), (11)
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subject to the constraints
n
∑

i=1
πi = 1, andπi > 0, ∀i, utilizing the fitness distribution

ϕi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n. (12)

Proof We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve the
optimization problem

min
π1,...,πn

Φ(π) = −
n

∑
i=1

F(xi)
N ln(πi),

subject to
n
∑

i=1
πi −1 = 0, and−πi < 0, 1≤ i ≤ n. Let

L(π1, . . . ,πn,λ ,µ1, . . . ,µn) = −
n

∑
i=1

F(xi)
N ln(πi)+λ

(

n

∑
i=1

πi −1

)

−
n

∑
i=1

µiπi .

The KKT necessary conditions for optimality are

−F(xi)
N

πi
+λ −µi = 0, 1≤ i ≤ n;

n

∑
i=1

πi −1 = 0; −πi < 0, 1≤ i ≤ n; λ ≥ 0;

µi ≥ 0, 1≤ i ≤ n; λ

(

n

∑
i=1

πi −1

)

= 0; µiπi = 0, 1≤ i ≤ n.

The first necessary condition becomes

−F(xi)
N +λπi −µiπi = 0, 1≤ i ≤ n.

Sinceµiπi = 0 for all i, we obtain

−F(xi)
N +λπi = 0, 1≤ i ≤ n.

Next, the constraintπi > 0 for all i and the positive nature ofF(xi)
N imply thatλ 6= 0.

Therefore,

πi =
F(xi)

N

λ
, 1≤ i ≤ n,

n

∑
i=1

πi =
n

∑
i=1

F(xi)
N

λ
, 1≤ i ≤ n.

Since
n
∑

i=1
πi = 1, we find that

λ =
n

∑
i=1

F(xi)
N
,
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and hence,

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n.

Thus, the stationary distribution in (10) satisfies the firstorder necessary conditions
for optimality.

Moreover, we have

∂ 2Φ(π)

∂π j∂πi
= 0 for j 6= i,

∂ 2Φ(π)

∂π2
i

=
F(xi)

N

π2
i

> 0.

Hence, the optimization problem has a strictly convex cost function and linear con-
straints. Thus, the solution of the first order necessary conditions is the global opti-
mizer.

Note that in (9), rational behavior is invariant under positive scaling of fitness.
Hence, there is no loss of generality in assuming that the fitness function is normal-
ized. Accordingly, letϕ =

[

ϕ1 ϕ2 . . . ϕn
]

be the distribution of theNth power of
fitness, where

ϕi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n.

Let

U(π) =
Φ(π)

n
∑

k=1
F (xk)

N
.

Then, the optimization problem can be normalized as min
π1,...,πn

U(π) = −
n
∑

i=1
ϕi ln(πi),

subject to the constraints
n
∑

i=1
πi −1= 0, and−πi < 0, 1≤ i ≤ n, which completes the

proof.

Theorem 2 states that at the optimum, the stationary distribution agrees with the
fitness distribution, i.e.,π = ϕ. Using the notion of entropy, we can interpret (11) as
follows. First, we recognize the term− ln(πi) as the information content of statexi

[16]. Hence, the right hand side of (11) represents the “fitness-expectation of infor-
mation.” Moreover, we have the following.

Corollary 1 The time-homogeneous, irreducible, ergodic Markov chain(X,P) be-
haves rationally with respect to fitness F with level N if and only if its stationary
probability distribution minimizes the fitness-expectation of information. At the opti-
mum, this fitness-expectation of information is the entropyof the fitness distribution,
i.e.,

U∗ = H(ϕ) = −
n

∑
i=1

ϕi ln(ϕi). (13)
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For Markov chains that behave rationally, and therefore possess fitness fractions
that are distributed over the set of states as in (12), the entropy quantifies how egali-
tarian or elitist the states are. That is, the entropy is highest when all states have equal
fitness; conversely, the entropy is lowest when there is onlyone state with a fitness
fraction of unity and all other fitness fractions are zero. Equation (11) is also derived
and discussed in [9] within the context of Information Theory [16].

Entropy maximization is important for search: ‘In making inferences on the basis
of partial information, the maximum entropy probability distribution subject to what-
ever is known is the only unbiased assignment we can make; to use any other would
amount to arbitrary assumption of information which by hypothesis we do not have’
[7]. The relationship between entropy maximization and optimal search is clarified in
[8]. The optimal search policy for cells with exponential “sizes” ‘appears very much
like an irreversible process in thermodynamics, in which aninitially non-equilibrium
state relaxes in the the equilibrium state of maximum entropy. But now it is only our
state of knowledge that relaxes to the “equilibrium” condition of maximum uncer-
tainty’ [8].

Applying these results from [7] and [8] to eliminate search biases during model-
independent optimization with time-varying objective function or state fitnesses, an
exponential normalized fitness function relates rational behavior, entropy and optimal
search through the following.

Theorem 3 Let y : X → R be an unknown function for which an expected value,
E[y(x)], is a known number Y . The normalized fitness

ϕi = αe−βy(xi), 1≤ i ≤ n, (14)

and the stationary distributionπ of the time-homogeneous, irreducible, ergodic Mar-
kov chain(X,P) that behaves rationally with respect to fitness F with level Nsolves
the optimization problem

max
ϕ1,...,ϕn

min
π1,...,πn

U(ϕ,π) = −
n

∑
i=1

ϕi ln(πi), (15)

subject to the constraint
E[y(x)] = Y. (16)

Proof We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve the
optimization problem

max
ϕ1,...,ϕn

H(ϕ) = −
n

∑
i=1

ϕi ln(ϕi),

subject to
n
∑

i=1
ϕi − 1 = 0, −ϕi < 0, 1 ≤ i ≤ n, and E[y(x)]−

n
∑

i=1
ϕiy(xi) = 0. Let

L(ϕ1, . . . ,ϕn,λ1,λ2,µ1, . . . ,µn) =

−
n

∑
i=1

ϕi ln(ϕi)+λ1

(

n

∑
i=1

ϕi −1

)

+λ2

(

E[y(x)]−
n

∑
i=1

ϕiy(xi)

)

−
n

∑
i=1

µiϕi .
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The KKT necessary conditions for optimality are

− lnϕi −1+λ1−λ2y(xi)−µi = 0, 1≤ i ≤ n;
n

∑
i=1

ϕi −1 = 0; −ϕi < 0, 1≤ i ≤ n;

λ1 ≥ 0; λ2 ≥ 0; µi ≥ 0, 1≤ i ≤ n; λ1

(

n

∑
i=1

ϕi −1

)

= 0;

λ2

(

E[y(x)]−
n

∑
i=1

ϕiy(xi)

)

= 0; µiϕi = 0, 1≤ i ≤ n.

The first necessary condition becomes

− lnϕi = λ1−λ2y(xi)−µi −1, 1≤ i ≤ n,

ϕi = e(λ1−λ2y(xi)−µi−1)
, 1≤ i ≤ n.

Sinceϕi 6= 0 for all i, µi = 0 for all i. We obtain

ϕi = eλ1−1 ·e−λ2y(xi), 1≤ i ≤ n,

or equivalently,

ϕi = αe−βy(xi), 1≤ i ≤ n.

Hence, a scheme with underlying Markov chain dynamics that behave rationally
also maximizes the entropy of the fitness distribution when the fitness function is
exponential. The implication is that a fitness function like

F(xi) = e−((z(xi)−zdes)
2) (17)

together with a scheme that makes use of rational behavior (see Section 4) guarantees
efficient search-based optimization.

4 Barker’s Algorithm Satisfies the Sufficient Conditions forEfficient Search

We first develop an MCMC method that optimizes through efficient search and then
demonstrate that algorithm’s equivalence to Barker’s algorithm. The technique devel-
oped here is that of Selective Evolutionary Generation Systems [12], which arose in
the context of tunable, responsive, model-independent optimization.
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4.1 Selective Evolutionary Generation Systems

Definition 2 A Selective Evolutionary Generation System(SEGS) is a quintupleΓ =
(X,R,P,G,F), where

– X is a set of arguments that are candidates for objective function optimization,
X = {x1,x2, . . . ,xn};

– R is a set whose elements can be utilized to transition betweenarguments,R=
{r1, r2, . . . , rm};

– P : R→ (0,1] is a probability mass function onR, given byP(r i) = Pr[R = r i ] =

pi ,
m
∑

k=1
pk = 1;

– G : X×R→ X is a mapping from one argument to another using an element from
R;

– F : X → R
+ is a function that evaluates argument fitness;

– X is reachable throughG andR; and
– the dynamics of the system are given by

X (t +1) = Select(X (t),G(X (t),R(t)),N), (18)

whereSelect: X×X×N→X is a random function such that ifx1 ∈X andx2 ∈X
are any two arguments, andN ∈ N is thelevel of selectivity, then

Select(x1,x2,N) =







x1 with probability F(x1)
N

F(x1)
N+F(x2)

N ,

x2 with probability F(x2)
N

F(x1)
N+F(x2)

N .

(19)

In (18),X (t) denotes the realization of a random argument at timet, R(t) denotes
the realization of a random element fromR at time t, G(X (t),R(t)) denotes the
outcome argument mapped from the realized argument at timet utilizing the element
from Rat timet, andX (0) has a known probability mass function.

TheSelectfunction has a number of interesting properties [12], including, for all
N,

Pr[Select(x1,x2,N) = x1]

Pr[Select(x1,x2,N) = x2]
=

(

F(x1)

F(x2)

)N

. (20)

That is, the ratio of the probabilities of selecting any two cells is equal to the ratio of
their respective fitnesses raised to the powerN. This property is calledlocal rational-
ity.

Definition 3 Let Γ = (X,R,P,G,F) be a SEGS. Letxi ,x j ∈ X and rk ∈ R. Thede-
scendancy tensor, δ , has elements

δi jk =

{

1 if x j = G(xi , rk), 1≤ i ≤ n, 1≤ j ≤ n, 1≤ k≤ m,

0 otherwise.
(21)

Hence, the descendancy tensor indicates whether it is possible to producex j in one
step fromxi , usingrk. We can use this tensor to create a matrix that represents the
conditional probability of transitioning tox j from xi , by utilizing the probability of
selecting each available element inRand summing over allm elements as follows.
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Definition 4 For the SEGSΓ = (X,R,P,G,F), the matrixγ, called the unselective
matrix of transition probabilities, has elements

γi j = Pr[offspring isx j | progenitor isxi ] =
m

∑
k=1

δi jk pk, 1≤ i ≤ n, 1≤ j ≤ n. (22)

This matrix is a stochastic matrix (see [12]).
For the SEGSΓ = (X,R,P,G,F), the matrix of transition probabilities,P, has

elements

Pi j = Pr[X (t +1) = x j | X (t) = xi ], (23)

=



























































Pr[Select(xi ,x j ,N) = x j | X (t) = xi ]

×Pr[offspring isx j | progenitor isxi ], ∀ j 6= i,

Pr[Select(xi ,xi ,N) = xi | X (t) = xi ]

×Pr[offspring isxi | progenitor isxi ]

+
n
∑

k=1
k6=i

Pr[Select(xi ,xk,N) = xi | X (t) = xi ]

×Pr[offspring isxk | progenitor isxi ], if j = i.

(24)

=























1

1+

(

F(xi )
F(xj )

)N γi j , ∀ j 6= i,

γii +
n
∑
j=1
j 6=i

1

1+

(

F(xj )

F(xi )

)N γi j , if j = i.
(25)

The matrix of transition probabilities in (25) is also a stochastic matrix (see [12]).

Theorem 4 For the ergodic SEGSΓ = (X,R,P,G,F), assume thatγ is symmetric.
Then the Markov chain representing the stochastic dynamicsof the ergodic SEGS be-
haves rationally with fitness F and level N. That is, the row vector π =

[

π1 π2 . . . πn
]

,
whereπi satisfies(10), is a left eigenvector ofP, the matrix of transition probabili-
ties forΓ , with corresponding eigenvalue 1 (i.e.,πP = π). Hence,π is the vector of
stationary probabilities for the SEGS.

Proof See [12].

The symmetry condition onγ implies that there exists equiprobable forward and
reverse transitions between any pair of arguments prior to the selection process.

Theorem 5 For the ergodic SEGSΓ = (X,R,P,G,F), assume thatγ is symmetric.
Then the Markov chain representing the stochastic dynamicsof the ergodic SEGS is
time-reversible, i.e.,

πiPi j = π jPji , ∀i, j. (26)

Proof See [12].

As a consequence, the Markov chain representing the stochastic dynamics of the
SEGS and its time reversed form are statistically the same.
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4.2 Barker’s Algorithm and SEGS

Comparing a SEGS to the treatment in Section 2, a SEGS hasQ = γ. For rational
behavior, we impose a symmetry condition resulting inQi j = Q ji . SettingSi j = 1 in
(4), the definition of rational behavior implies that the acceptance probability utilized
by the SEGS algorithm is

αi j =
1

1+
(

πi
π j

) . (27)

From (8) and (27), Barker’s algorithm and the SEGS algorithmare the same.

5 Conclusions

Since Barker’s algorithm and the SEGS technique are equivalent, and a SEGS has
the capacity for optimal search efficiency by Theorem 3 (which has its hypothesis
satisfied by Theorem 4), it follows that Barker’s algorithm with an exponential fitness
function is optimally search efficient.
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